Chemical Communications

Number 14 1985

Shape Similarity Effect on the Strength of Weak Interactions of a Phenyl Group with Unsaturated Hydrocarbons and Ethers

Tadashi Endo,* Masato M. Ito, and Takao Namiki

College of Science and Engineering, Aoyama Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157, Japan

Gas chromatographic studies for pairs of six-membered-ring (cyclic) and straight-chain hydrocarbons and ethers have shown that the weak interactions of the phenyl group in a stationary liquid are more attractive with the cyclic hydrocarbons and ethers, which are similar in shape to the phenyl group, than with the straight-chain hydrocarbons and ethers, each pair containing the same number of π -electrons or oxygen atoms.

Recently, we have suggested the importance of threedimensional shape similarity between interacting groups of reacting molecules in specific molecular recognition. **1** This 'similarity recognition hypothesis' led us to examine the correlation of shape similarity between interacting groups with the strength of weak interactions between them, since shape-specific weak interactions have been suggested to be responsible for specific molecular recognition.2 We have studied the retention time in gas-liquid partition chromatography for various hydrocarbons containing different numbers of π -electrons or oxygen atoms, and report here that the weak interactions of a phenyl (Ph) group are more attractive with the six-membered-ring (cyclic) hydrocarbons, which are similar in three-dimensional shape to the Ph group, than with the corresponding straight-chain hydrocarbons.

As stationary liquid phases we used a pair of silicone oils **[(l)** and **(2)lt** with and without a Ph group. The samples employed were a variety of cyclic **(3)** and straight-chain **(4)** hydrocarbons and ethers, each having a different number of π -electrons or oxygen atoms. The relative retention (α_r) was defined as the ratio of the retention time\$ for **(3)** or **(4)** to that for n-hexane **(4f)** as the reference, where $x = 1$ or 2, depending on the nature $[(1)$ or $(2)]$ of the stationary liquid phase employed.

The α_1 and α_2 values were measured at various temperatures. Plots of $\ln \alpha_x$ against T^{-1} showed a straight line for each sample pair examined. Since the relationship $\ln \alpha_r$ = $-\Delta\Delta H_x/RT + C$ holds, where $\Delta\Delta H_x$ is the difference in molar heat of solution between samples **(3)** or **(4a-e)** and **(4f)** in

liquid *x*,^{3,4} the slope of the plots yields $-\Delta\Delta H_x/R$. Though the $\Delta \Delta H_x$ itself involves the difference in heat of vaporisation between samples **(3)** or $(4a - e)$ and $(4f)$, the difference is cancelled by subtracting $\Delta \Delta H_1$ from $\Delta \Delta H_2$.³ Thus, the $\Delta \Delta H_1$ ^t $(=\Delta \Delta H_2 - \Delta \Delta H_1)$ can be regarded as a measure of the difference in the weak interactions of the Ph group in **(2)** between **(3)** or **(4a-e)** and **(4f).3**

Figure 1 plots the $\Delta \Delta H^t$ values for cyclic (3a-c) and straight-chain unsaturated hydrocarbons **(4a--c),** together with those for $(3f)^3$ and $(4f)$, against the number of π -electrons in the samples. The $\Delta \Delta H^t$ values are negative for all the

$$
\begin{bmatrix} R^{1} \\ -\frac{1}{5i} - 0 \\ \frac{1}{R^{2}} \end{bmatrix}_{m} \begin{bmatrix} R^{2} \\ \frac{1}{5i} - 0 \\ \frac{1}{R^{2}} \end{bmatrix}_{n}
$$

\n(1) $R^{1} = R^{2} = Me$
\n(2) $R^{1} = Me, R^{2} = Ph (m:n = 1:1)$

 $[CH=CH]$ H [CH=CH]_n [CH₂CH₂]_{3-n}H $[CH₂CH₂]$ *(3a)n* = **1** $(4a) n = 1$ $(3b) n = 2$ **(4b)** *n* = **2,** *trans (3c)n* = *3 (4c) n* = *3, trans* **(3f)** *n* = *0* **(4f)** *n* = **0**

t Silicone oils were used as the stationary liquid phases: **(l),** Silicone OV-101 (100% Me); **(2),** Silicone OV-25 **(75%** Ph and 25% Me). These were coated on acid-treated Celite **545** in a weight ratio of 1 to 5, and the stationary phases were packed in stainless-steel tubes (3 mm internal diameter $\times 2$ m). The carrier gas was nitrogen with a flow rate of 20 ml min $^{-1}$.

 \ddagger Retention time was measured from the methane peak to correct for the free space in the system.

Figure 1. Plot of $\Delta \Delta H^t$ for cyclic (3) and straight-chain C₆ hydrocarbons (4) against their numbers of π -electrons. Samples used are cyclohexene **(3a),** hex-1-ene **(4a),** cyclohexa-1,3-diene **(3b),** hexa-l,3 diene **(4b),** benzene **(3c),** hexa-l,3,5-triene *(k),* cyclohexane **(3f),3** and n-hexane **(4f).** The experimental errors (standard deviation) range from ± 0.02 [for the pair (3a)-(4f)] to ± 0.06 kcal mol⁻¹ [for the pair (3b)-(4f)]. Temperature range: 70-120 °C.

Figure 2. Plot of $\Delta \Delta H^t$ for cyclic (3) and straight-chain ethers (4) against their numbers of oxygen atoms. Samples used are tetrahydropyran *(M),* 1-methoxybutane **(4d),** 1,4-dioxane **(3e),** 1,2- dimethoxyethane **(4e),** cyclohexane **(3f),3** and n-hexane **(4f).** The experimental errors (standard deviation) range from ± 0.03 [for the pair **(3d)-(4f)**] to ± 0.04 kcal mol⁻¹ [for the pair **(4e)-(4f)**]. Temperature range: 70-120 °C.

sample pairs examined, and decrease with an increase in number of π -electrons. Of particular interest is the finding that, when the samples **(3)** and **(4)** have equal numbers of π -electrons, the $\Delta \Delta H^t$ values are more negative for cyclic hydrocarbons **(3)** than for straight-chain hydrocarbons **(4)** by *ca.* 0.3 kcal mol⁻¹ [e.g., -0.66 ± 0.02 kcal mol⁻¹ for **(3a)** – **(4f)** and -0.35 ± 0.04 kcal mol⁻¹ for **(4a)** $-$ **(4f)**].§

Further, the data in Figure 2 clearly indicate that the $\Delta\Delta H^t$ values are more negative for cyclic ethers **(3d,e)** than for straight-chain ethers **(4d,e)** when **(3d,e)** and **(4d,e)** have equal numbers of oxygen atoms.

The weak interactions of the Ph group in liquid **(2)** with samples **(3)** and **(4)** become more attractive as the number **of** π -electrons increases (Figure 1), probably reflecting the π -electron interactions; \oint the increase in strength of the above interactions with increasing numbers of oxygen atoms in the samples (Figure **2)** would be due to multipole-induced multipole interactions, as suggested by Stoddart et al.^{5||} Moreover, examination of Corey-Pauling-Koltun (CPK) molecular models indicates that a Ph group bears closer resemblance in three-dimensional shape to cyclic samples **(3)** than to straight-chain samples **(4).**

On the basis of the results and discussions presented here, we propose that the weak interactions of a Ph group become more attractive with a group which resembles the Ph group in three-dimensional shape. This 'shape similarity effect' on weak interactions **is** assumed to underlie the 'similarity recognition hypothesis .'I

Received, 26th March 1985; Corn. 408

References

- 1 T. Endo, H. Tasai, K. Miyazawa, M. Endo, K. Kato, A. Uchida, Y. Ohashi, and Y. Sasada, J. Chem. Soc., Chem. Commun., 1983, 636; T. Endo, 'The Role of Molecular Shape Similarity in Specific Molecular Recognition,' in 'Biomimetic and Bioorganic Chemistry,' Springer, Berlin, 1985.
- 2 T. Endo, Y. Takeda, T. Orii, T. Murata, M. Sakai, N. Nakagawa, and K. Nikki, *Chem. Lett.,* 1980, 1291.
- 3 T. Endo, M. M. Ito, Y. Yamada, H. Saito, K. Miyazawa, and M. Nishio, J. *Chem.* **SOC.,** *Chem. Commun.,* 1983, 1430.
- 4 R. J. Laub and R. L. Pecsok, 'Physicochemical Applications of Gas Chromatography,' Wiley, New York, 1978.
- 5 J. F. Stoddart, *Chem.* **SOC.** *Rev.,* 1979,8,85 and the references cited therein; S. E. Fuller, B. E. Mann, and J. F. Stoddart, *J. Chem.* **SOC.,** *Chem. Commun.,* 1982, 1096.

fl Considering that transfer of a benzene molecule from an environment of benzene molecules into an environment of saturated hydrocarbon molecules is suggested to be energetically unfavourable to an extent ranging up to *ca.* 1 kcal mol-1 (W. P. Jencks,'Catalysis in Chemistry and Enzymology,' McGraw-Hill, New York, 1969, p. 415, and the references cited therein), the value of 0.93 ± 0.05 kcal mol⁻¹ for the difference in $\Delta \Delta H^t$ between benzene **(3c)** and cyclohexane **(3f)** seems to be reasonable (Figure 1).

In this connection it is interesting to note that the interactions of a Ph group are no less attractive with 1,3-dioxane $(\Delta \Delta Ht = -1.86 \pm 0.04$ kcal mol⁻¹) than with its 1,4-isomer (3e) $(\Delta \Delta H^t = -1.82 \pm 0.03 \text{ kcal})$ mol^{-1}).

 $\$ 1 cal = 4.184 J.