Chemical Communications

Number 14 1985

Shape Similarity Effect on the Strength of Weak Interactions of a Phenyl Group with Unsaturated Hydrocarbons and Ethers

Tadashi Endo,* Masato M. Ito, and Takao Namiki

College of Science and Engineering, Aoyama Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157, Japan

Gas chromatographic studies for pairs of six-membered-ring (cyclic) and straight-chain hydrocarbons and ethers have shown that the weak interactions of the phenyl group in a stationary liquid are more attractive with the cyclic hydrocarbons and ethers, which are similar in shape to the phenyl group, than with the straight-chain hydrocarbons and ethers, each pair containing the same number of π -electrons or oxygen atoms.

Recently, we have suggested the importance of threedimensional shape similarity between interacting groups of reacting molecules in specific molecular recognition.¹ This 'similarity recognition hypothesis' led us to examine the correlation of shape similarity between interacting groups with the strength of weak interactions between them, since shape-specific weak interactions have been suggested to be responsible for specific molecular recognition.² We have studied the retention time in gas–liquid partition chromatography for various hydrocarbons containing different numbers of π -electrons or oxygen atoms, and report here that the weak interactions of a phenyl (Ph) group are more attractive with the six-membered-ring (cyclic) hydrocarbons, which are similar in three-dimensional shape to the Ph group, than with the corresponding straight-chain hydrocarbons.

As stationary liquid phases we used a pair of silicone oils $[(1) \text{ and } (2)]^{\dagger}$ with and without a Ph group. The samples employed were a variety of cyclic (3) and straight-chain (4) hydrocarbons and ethers, each having a different number of π -electrons or oxygen atoms. The relative retention (α_x) was defined as the ratio of the retention time‡ for (3) or (4) to that for n-hexane (4f) as the reference, where x = 1 or 2, depending on the nature [(1) or (2)] of the stationary liquid phase employed.

The α_1 and α_2 values were measured at various temperatures. Plots of $\ln \alpha_x$ against T^{-1} showed a straight line for each sample pair examined. Since the relationship $\ln \alpha_x = -\Delta \Delta H_x/RT + C$ holds, where $\Delta \Delta H_x$ is the difference in molar heat of solution between samples (3) or (4a-e) and (4f) in liquid x,^{3,4} the slope of the plots yields $-\Delta\Delta H_x/R$. Though the $\Delta\Delta H_x$ itself involves the difference in heat of vaporisation between samples (3) or (4a-e) and (4f), the difference is cancelled by subtracting $\Delta\Delta H_1$ from $\Delta\Delta H_2$.³ Thus, the $\Delta\Delta H^t$ (= $\Delta\Delta H_2 - \Delta\Delta H_1$) can be regarded as a measure of the difference in the weak interactions of the Ph group in (2) between (3) or (4a-e) and (4f).³

Figure 1 plots the $\Delta\Delta H^{t}$ values for cyclic (3a—c) and straight-chain unsaturated hydrocarbons (4a—c), together with those for (3f)³ and (4f), against the number of π -electrons in the samples. The $\Delta\Delta H^{t}$ values are negative for all the

$$\begin{bmatrix} R^{1} \\ ... \\$$

$\binom{[CH=CH]_n}{[CH_2CH_2]_{3-n}}$	н [Сн=Сн], [Сн ₂ Сн ₂] _{3-л} н
(3a) n = 1	(4a) n = 1
(3b) n = 2	(4b) n = 2, trans
(3c) n = 3	(4c) n = 3, trans
(3f) n = 0	(4f) n = 0

(3e) X = Y = 0

(4d) X = 0, Y = CH₂ (4e) X = Y = 0

MeXCH₂CH₂YMe

[†] Silicone oils were used as the stationary liquid phases: (1), Silicone OV-101 (100% Me); (2), Silicone OV-25 (75% Ph and 25% Me). These were coated on acid-treated Celite 545 in a weight ratio of 1 to 5, and the stationary phases were packed in stainless-steel tubes (3 mm internal diameter $\times 2$ m). The carrier gas was nitrogen with a flow rate of 20 ml min⁻¹.

[‡] Retention time was measured from the methane peak to correct for the free space in the system.

Figure 1. Plot of $\Delta\Delta H^t$ for cyclic (3) and straight-chain C₆ hydrocarbons (4) against their numbers of π -electrons. Samples used are cyclohexaen (3a), hex-1-ene (4a), cyclohexa-1,3-diene (3b), hexa-1,3-diene (4b), benzene (3c), hexa-1,3,5-triene (4c), cyclohexaen (3f),³ and n-hexane (4f). The experimental errors (standard deviation) range from ± 0.02 [for the pair (3a)-(4f)] to ± 0.06 kcal mol⁻¹ [for the pair (3b)-(4f)]. Temperature range: 70-120 °C.

Figure 2. Plot of $\Delta\Delta H^{t}$ for cyclic (3) and straight-chain ethers (4) against their numbers of oxygen atoms. Samples used are tetrahydropyran (3d), 1-methoxybutane (4d), 1,4-dioxane (3e), 1,2-dimethoxyethane (4e), cyclohexane (3f),³ and n-hexane (4f). The experimental errors (standard deviation) range from ± 0.03 [for the pair (3d)-(4f)] to ± 0.04 kcal mol⁻¹ [for the pair (4e)-(4f)]. Temperature range: 70-120 °C.

sample pairs examined, and decrease with an increase in number of π -electrons. Of particular interest is the finding that, when the samples (3) and (4) have equal numbers of π -electrons, the $\Delta\Delta H^{t}$ values are more negative for cyclic hydrocarbons (3) than for straight-chain hydrocarbons (4) by *ca.* 0.3 kcal mol⁻¹ [*e.g.*, -0.66 \pm 0.02 kcal mol⁻¹ for (3a) – (4f) and -0.35 \pm 0.04 kcal mol⁻¹ for (4a) – (4f)].§

Further, the data in Figure 2 clearly indicate that the $\Delta\Delta H^{t}$ values are more negative for cyclic ethers (**3d**,e) than for straight-chain ethers (**4d**,e) when (**3d**,e) and (**4d**,e) have equal numbers of oxygen atoms.

The weak interactions of the Ph group in liquid (2) with samples (3) and (4) become more attractive as the number of π -electrons increases (Figure 1), probably reflecting the π -electron interactions;¶ the increase in strength of the above interactions with increasing numbers of oxygen atoms in the samples (Figure 2) would be due to multipole-induced multipole interactions, as suggested by Stoddart *et al.*⁵|| Moreover, examination of Corey-Pauling-Koltun (CPK) molecular models indicates that a Ph group bears closer resemblance in three-dimensional shape to cyclic samples (3) than to straight-chain samples (4).

On the basis of the results and discussions presented here, we propose that the weak interactions of a Ph group become more attractive with a group which resembles the Ph group in three-dimensional shape. This 'shape similarity effect' on weak interactions is assumed to underlie the 'similarity recognition hypothesis.'¹

Received, 26th March 1985; Com. 408

References

- T. Endo, H. Tasai, K. Miyazawa, M. Endo, K. Kato, A. Uchida, Y. Ohashi, and Y. Sasada, J. Chem. Soc., Chem. Commun., 1983, 636; T. Endo, 'The Role of Molecular Shape Similarity in Specific Molecular Recognition,' in 'Biomimetic and Bioorganic Chemistry,' Springer, Berlin, 1985.
- 2 T. Endo, Y. Takeda, T. Orii, T. Murata, M. Sakai, N. Nakagawa, and K. Nikki, *Chem. Lett.*, 1980, 1291.
- 3 T. Endo, M. M. Ito, Y. Yamada, H. Saito, K. Miyazawa, and M. Nishio, J. Chem. Soc., Chem. Commun., 1983, 1430.
- 4 R. J. Laub and R. L. Pecsok, 'Physicochemical Applications of Gas Chromatography,' Wiley, New York, 1978.
- 5 J. F. Stoddart, Chem. Soc. Rev., 1979, 8, 85 and the references cited therein; S. E. Fuller, B. E. Mann, and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1982, 1096.

¶ Considering that transfer of a benzene molecule from an environment of benzene molecules into an environment of saturated hydrocarbon molecules is suggested to be energetically unfavourable to an extent ranging up to *ca*. 1 kcal mol⁻¹ (W. P. Jencks, 'Catalysis in Chemistry and Enzymology,' McGraw-Hill, New York, 1969, p. 415, and the references cited therein), the value of 0.93 ± 0.05 kcal mol⁻¹ for the difference in $\Delta \Delta H^{t}$ between benzene (**3c**) and cyclohexane (**3f**) seems to be reasonable (Figure 1).

|| In this connection it is interesting to note that the interactions of a Ph group are no less attractive with 1,3-dioxane ($\Delta\Delta H^{t} = -1.86 \pm 0.04$ kcal mol⁻¹) than with its 1,4-isomer (**3e**) ($\Delta\Delta H^{t} = -1.82 \pm 0.03$ kcal mol⁻¹).

 ¹ cal = 4.184 J.